Playthis game to review Mathematics. < artinya .
Punggunganumumnya memiliki bentuk kontur yang lebih landai dan berbentuk U, sedangkan jurang umumnya memiliki kontur yang lebih terjal dan berbentuk V. Sesuai dengan skala yang ada, 1 cm di peta sama dengan 600.000 cm di dunia nyata. Maka, 10 cm di peta adalah 6.000.000 cm di dunia nyata, atau sekitar 60 kilometer.
Demikepentingan militer dari pemerintah Jepang, waktu di Indonesia diubah kembali. Hal tersebut terjadi pada tahun 1942. Perubahan yang dilakukan tersebut adalah menyesuaikan dengan waktu yang ada di Tokyo. Diketahui bahwa waktu di kota Tokyo adalah GMT + 9. Oleh karena itu, zona waktu di wilayah Jawa dimajukan menjadi GMT + 7:30 atau 1:30.
Iamenjelaskan, melalui kerja sama dengan ke-32 puskesmas tersebut menegaskan bahwa semua puskesmas di Kabupaten Lamongan telah menjadi mitra atau Pusat Layanan Kecelakaan Kerja (PLKK) bagi peserta BPJS Ketenagakerjaan yang mengalami musibah kecelakaan kerja. Berdasarkan Undang-Undang Nomor 24 Tahun 2011 tentang Badan
Segitigasama sisi atau equilateral triangle adalah segitiga yang memiliki tiga sisi yang sama panjang, ketiga sudutnya sama-sama 60°, dan memiliki tiga sumbu simetri. Download Aplikasi Zenius Tingkatin hasil belajar lewat kumpulan video materi dan ribuan contoh soal di
LatihanAlgoritma mystery T(n) = n – 1. Estimasi waktu eksekusi algoritma jika array inputnya memiliki anggota 10 elemen 20 elemen 30 elemen Buat grafik yang menunjukkan hubungan antara banyaknya elemen array yang dieksekusi dengan waktu eksekusi 47
. Operator Python Operator adalah konstruksi yang dapat memanipulasi nilai dari operan. Sebagai contoh operasi 3 + 2 = 5. Disini 3 dan 2 adalah operan dan + adalah operator. Bahasa pemrograman Python mendukung berbagai macam operator, diantaranya Operator Aritmatika Arithmetic Operators Operator Perbandingan Comparison Relational Operators Operator Penugasan Assignment Operators Operator Logika Logical Operators Operator Bitwise Bitwise Operators Operator Keanggotaan Membership Operators Operator Identitas Identity Operators Operator Aritmatika Operator Contoh Penjelasan Penjumlahan + 1 + 3 = 4 Menjumlahkan nilai dari masing-masing operan atau bilangan Pengurangan - 4 - 1 = 3 Mengurangi nilai operan di sebelah kiri menggunakan operan di sebelah kanan Perkalian * 2 * 4 = 8 Mengalikan operan/bilangan Pembagian / 10 / 5 = 2 Untuk membagi operan di sebelah kiri menggunakan operan di sebelah kanan Sisa Bagi % 11 % 2 = 1 Mendapatkan sisa pembagian dari operan di sebelah kiri operator ketika dibagi oleh operan di sebelah kanan Pangkat ** 8 ** 2 = 64 Memangkatkan operan disebelah kiri operator dengan operan di sebelah kanan operator Pembagian Bulat // 10 // 3 = 3 Sama seperti pembagian. Hanya saja angka dibelakang koma dihilangkan Dibawah ini adalah contoh penggunaan Operator Aritmatika dalam bahasa pemrograman Python OPERATOR ARITMATIKA Penjumlahan print13 + 2 apel = 7 jeruk = 9 buah = apel + jeruk printbuah Pengurangan hutang = 10000 bayar = 5000 sisaHutang = hutang - bayar print"Sisa hutang Anda adalah ", sisaHutang Perkalian panjang = 15 lebar = 8 luas = panjang * lebar printluas Pembagian kue = 16 anak = 4 kuePerAnak = kue / anak print"Setiap anak akan mendapatkan bagian kue sebanyak ", kuePerAnak Sisa Bagi / Modulus bilangan1 = 14 bilangan2 = 5 hasil = bilangan1 % bilangan2 print"Sisa bagi dari bilangan ", bilangan1, " dan ", bilangan2, " adalah ", hasil Pangkat bilangan3 = 8 bilangan4 = 2 hasilPangkat = bilangan3 ** bilangan4 printhasilPangkat Pembagian Bulat print10//3 10 dibagi 3 adalah Karena dibulatkan maka akan menghasilkan nilai 3 Operator Perbandingan Operator perbandingan comparison operators digunakan untuk membandingkan suatu nilai dari masing-masing operan. Operator Contoh Penjelasan Sama dengan == 1 == 1 bernilai True Jika masing-masing operan memiliki nilai yang sama, maka kondisi bernilai benar atau True. Tidak sama dengan != 2 != 2 bernilai False Akan menghasilkan nilai kebalikan dari kondisi sebenarnya. Tidak sama dengan 2 2 bernilai False Akan menghasilkan nilai kebalikan dari kondisi sebenarnya. Lebih besar dari > 5 > 3 bernilai True Jika nilai operan kiri lebih besar dari nilai operan kanan, maka kondisi menjadi benar. Lebih kecil dari = 5 >= 3 bernilai True Jika nilai operan kiri lebih besar dari nilai operan kanan, atau sama, maka kondisi menjadi benar. Lebih kecil atau sama dengan 3 Hasilnya akan bernilai True karena lima lebih besar dari tiga LEBIH KECIL DARI print5 = 3 Hasilnya akan bernilai True karena lima lebih besar dari sama dengan tiga LEBIH KECIL DARI SAMA DENGAN print5 >, , >= Perbandingan , ==, != Perbandingan =, %=, /=, //=, -=, +=, *=, **= Penugasan is, is not Identitas in, not in Membership Keanggotaan not, or, and Logika Edit tutorial ini
Unduh PDF Unduh PDF Dalam geometri, sudut adalah ruang antara 2 sinar atau segmen garis dengan titik ujung yang sama alias verteks. Cara paling umum untuk mengukur sudut adalah menggunakan satuan derajat, dan satu lingkaran penuh memiliki sudut 360 derajat. Anda bisa menghitung besar satu sudut dalam suatu poligon jika mengetahui bentuk segi banyak tersebut dan besar sudut-sudut lainnya, atau dalam kasus segitiga siku-siku, jika Anda mengetahui panjang dua sisinya. Sebagai tambahan, Anda bisa mengukur sudut menggunakan busur atau menghitungnya memakai kalkulator grafik. 1 Hitung jumlah sisi dalam poligon. Untuk bisa menghitung besar sudut interior poligon, pertama-tama Anda perlu menentukan banyaknya sisi yang dimiliki poligon tersebut. Ketahui bahwa jumlah sisi poligon sama dengan jumlah sudutnya.[1] Sebagai contoh, segitiga memiliki 3 sisi dan 3 sudut interior, sementara persegi memiliki 4 sisi dan 4 sudut interior. 2 Temukan besar total semua sudut interior poligon. Rumus untuk menemukan ukuran total semua sudut dalam poligon adalah n – 2 x 180. Dalam kasus ini, n adalah jumlah sisi yang dimiliki poligon. Total ukuran sudut dalam beberapa poligon umum adalah sebagai berikut[2] Total sudut dalam segitiga poligon bersisi 3 adalah 180 derajat. Total sudut dalam segiempat poligon bersisi 4 adalah 360 derajat. Total sudut dalam segilima poligon bersisi 5 adalah 540 derajat. Total sudut dalam segienam poligon bersisi 6 adalah 720 derajat. Total sudut dalam segitiga poligon bersisi 7 adalah 1080 derajat. 3 Bagikan ukuran sudut total dari semua poligon teratur dengan jumlah sudutnya. Poligon teratur adalah poligon yang panjang semua sisinya sama sehingga semua besar sudutnya pun sama. Sebagai contoh, besar setiap sudut dalam segitiga sama sisi adalah 180 ÷ 3, atau 60 derajat, dan besar setiap sudut dalam persegi adalah 360 ÷ 4, atau 90 derajat.[3] Segitiga sama sisi dan persegi adalah contoh poligon teratur, sementara Pentagon di Washington, Amerika Serikat, adalah contoh segilima teratur, dan rambu berhenti adalah contoh oktagon/segidelapan teratur. 4 Kurangkan besar total sudut poligon dengan jumlah semua sudut yang diketahui untuk mencari besar sudut di poligon tidak teratur. Kalau poligon tidak memiliki panjang sisi dan besar sudut yang sama, Anda hanya perlu menjumlahkan semua sudut yang diketahui dalam poligon tersebut. Kemudian, kurangkan total besar sudut poligon terkait dengan jumlah semua sudut yang diketahui untuk menemukan besar sudut yang belum diketahui.[4] Sebagai contoh, jika Anda mengetahui bahwa 4 sudut dalam pentagon masing-masing adalah 80, 100, 120, dan 140 derajat, jumlahkan semuanya untuk memperoleh 440. Kemudian, kurangkan angka tersebut dari total besar sudut sebuah pentagon, yaitu 540 derajat 540 – 440 = 100 derajat. Jadi, besar sudut yang tersisa adalah 100 derajat. Tip Sebagian poligon memiliki “cara pintas” untuk membantu Anda mengukur sudut yang tidak diketahui. Segitiga sama kaki adalah segitiga yang panjang dua sisinya sama dan memiliki 2 sudut yang besarnya sama. Paralelogram adalah segiempat dengan panjang sisi-sisi berseberangan sama dan memiliki besar sudut-sudut yang berseberangan secara diagonal juga sama. Iklan 1Ingat bahwa dalam setiap segitiga siku-siku hanya ada satu sudut yang besarnya sama dengan 90 derajat. Secara definisi, sudut siku-siku selalu memiliki besar sama dengan 90 derajat, bahkan jika tidak diberi label. Jadi, Anda akan selalu mengetahui besar minimal satu sudut dan bisa menggunakan trigonometri untuk mencari besar kedua sudut lainya.[5] 2Ukur panjang dua sisi segitiga. Sisi terpanjang segitiga disebut “hipotenusa.” Sisi “samping” adalah sisi yang berada di sebelah sudut yang ingin dicari besarnya. Sisi “depan” adalah sisi yang berada di depan sudut yang dicari. Ukur kedua sisi ini sehingga Anda bisa menentukan ukuran sudut yang tersisa dalam segitiga.[6] Tip Anda bisa menggunakan kalkulator grafik untuk menyelesaikan persamaan atau mencari tabel daring yang mendaftarkan nilai-nilai beragam sinus, cosinus, dan tangen. 3 Gunakan fungsi sinus jika Anda mengetahui panjang sisi depan dan hipotenusa. Masukkan angka ke persamaan sinus x = depan ÷ hipotenusa. Katakan panjang sisi depan adalah 5 dan panjang hipotenusa adalah 10. Bagikan 5 dengan 10, yaitu sama dengan 0,5. Sekarang Anda mengetahui bahwa sinus x = 0,5 yaitu sama dengan x = sinus-1 0,5.[7] Kalau Anda memiliki kalkulator grafik, cukup tikkan 0,5 dan tekan sinus-1. Jika Anda tidak memiliki kalkulator grafik, gunakan bagan daring untuk menemukan nilainya. Anda akan menemukan bahwa x = 30 derajat 4 Gunakan fungsi cosinus jika mengetahui panjang sisi samping dan hipotenusa. Untuk soal semacam ini, gunakan persamaan cosinus x = sisi samping ÷ hipotenusa. Kalau panjang sisi samping adalah 1,666 dan panjang hipotenusa adalah 2,0, bagikan 1,666 dengan 2, yang sama dengan 0,833. Jadi, cosinus x = 0,833 atau x = cosinus-1 0,833.[8] Masukkan 0,833 ke kalkulator grafik dan tekan tombol cosinus-1. Kalau tidak, carilah di bagan nilai cosinus. Jawabannya adalah 33,6 derajat. 5 Gunakan fungsi tangen jika mengetahui panjang sisi depan dan samping. Persamaan untuk fungsi tangen adalah tangen x = depan ÷ samping. Katakan Anda mengetahui panjang sisi depan adalah 75 dan panjang sisi samping adalah 100. Bagikan 75 dengan 100, yaitu 0,75. Artinya, tangen x = 0,75, yang sama dengan x = tangen-1 0,75.[9] Cari nilai dalam bagan tangen atau tekan 0,75 pada kalkulator grafik, lalu tangen-1. Nilainya sama dengan 36,9 derajat. Iklan Sudut diberi nama berdasarkan besar ukurannya. Seperti yang disebutkan di atas, sudut siku-siku memiliki besar 90 derajat. Sudut yang besarnya kurang dari 90 tetapi lebih dari 0 derajat dinamakan sudut lancip. Sudut yang ukurannya lebih dari 90 derajat dan kurang dari 180 derajat dinamakan sudut tumpul. Sudut dengan besar 180 derajat dinamakan sudut lurus, sementara sudut yang lebih dari 180 derajat dinamakan sudut refleks. Dua sudut yang jika dijumlahkan menghasilkan 90 derajat dinamakan sudut komplementer kedua sudut selain sudut siku-siku dalam segitiga siku-siku adalah sudut komplementer. Dua sudut yang jika ditambahkan berjumlah 180 derajat dinamakan sudut suplementer. Iklan Tentang wikiHow ini Halaman ini telah diakses sebanyak kali. Apakah artikel ini membantu Anda?
Unduh PDF Unduh PDF Meskipun mudah untuk mengurutkan bilangan cacah seperti 1, 3, dan 8 berdasarkan nilainya, secara sekilas, pecahan mungkin sulit untuk diurutkan. Jika setiap angka di bagian bawahnya, atau penyebut, sama besar, kamu bisa mengurutkannya seperti bilangan cacah, seperti 1/5, 3/5, dan 8/5. Kalau tidak, kamu harus mengubah pecahanmu sehingga memiliki penyebut yang sama, tanpa mengubah nilainya. Hal ini semakin mudah dilakukan dengan banyak berlatih, dan kamu juga bisa mempelajari beberapa trik saat membandingkan dua pecahan saja, atau saat mengurutkan pecahan dengan pembilang yang lebih besar seperti 7/3. 1 Temukan penyebut yang sama besar untuk semua pecahan. Gunakan salah satu cara berikut untuk mencari penyebut, atau angka di bagian bawah pecahan, yang bisa kamu gunakan untuk mengubah semua pecahan, sehingga kamu bisa membandingkannya dengan mudah. Angka ini disebut penyebut yang sama, atau penyebut terkecil yang sama jika merupakan angka terkecil yang memungkinkan [1] Kalikan setiap penyebut yang berbeda. Misalnya, kamu membandingkan 2/3, 5/6, dan 1/3, kalikan dua penyebut yang berbeda 3 x 6 = 18. Ini adalah cara yang sederhana, tetapi sering menghasilkan bilangan yang lebih besar dari cara yang lain, sehingga sulit untuk diselesaikan. Atau buatlah daftar kelipatan setiap penyebut dalam kolom yang berbeda, hingga kamu menemukan bilangan yang sama yang muncul di setiap kolom. Gunakan bilangan ini. Misalnya, membandingkan 2/3, 5/6, dan 1/3, buatlah daftar kelipatan 3 3, 6, 9, 12, 15, 18. Kemudian kelipatan 6 6, 12, 18. Karena 18 muncul di kedua daftar, gunakan bilangan tersebut. Kamu juga bisa menggunakan 12, tetapi cara ini akan menggunakan 18. 2 Ubahlah setiap pecahan sehingga memiliki penyebut yang sama. Ingat, jika kamu mengalikan angka atas dan bawah pecahan dengan bilangan yang sama, nilai pecahan akan tetap sama. Gunakan teknik ini pada setiap pecahan satu per satu sehingga setiap pecahan memiliki penyebut yang sama. Cobalah untuk 2/3, 5/6, dan 1/3, menggunakan penyebut yang sama, 18 18 ÷ 3 = 6, jadi 2/3 = 2x6/3x6=12/18 18 ÷ 6 = 3, jadi 5/6 = 5x3/6x3=15/18 18 ÷ 3 = 6, jadi 1/3 = 1x6/3x6=6/18 3Gunakan bilangan atas untuk mengurutkan pecahan. Karena semua pecahan sudah memiliki penyebut yang sama, kamu akan mudah membandingkannya. Gunakan angka atasnya atau pembilang untuk mengurutkan dari yang terkecil hingga terbesar. Mengurutkan pecahan yang kita temukan di atas, kita mendapatkan 6/18, 12/18, 15/18. 4 Kembalikan setiap pecahan ke bentuk awalnya. Biarkan saja urutan pecahan, tetapi kembalikan ke bentuk awalnya. Kamu bisa melakukannya dengan mengingat-ingat perubahan pecahan, atau dengan membagi bilangan atas dan bawah pecahan lagi 6/18 = 6 ÷ 6/18 ÷ 6 = 1/3 12/18 = 12 ÷ 6/18 ÷ 6 = 2/3 15/18 = 15 ÷ 3/18 ÷ 3 = 5/6 Jawabannya adalah "1/3, 2/3, 5/6" Iklan 1Tuliskan kedua pecahan bersebelahan. Misalnya, bandingkan pecahan 3/5 dan 2/3. Tuliskan keduanya bersebelahan 3/5 di kiri dan 2/3 di kanan. 2 Kalikan bilangan atas pecahan pertama dengan bilangan bawah pecahan kedua. Dalam contoh kita, bilangan atas atau pembilang dari pecahan pertama 3/5 adalah 3. Angka bawah atau penyebut dari pecahan kedua 2/3 juga adalah 3. Kalikan keduanya 3 x 3 = ? Cara ini disebut perkalian silang karena kamu mengalikan bilangan secara diagonal satu sama lain. 3Tuliskan jawabanmu di sebelah pecahan pertama. Tuliskan hasil perkalianmu di sebelah pecahan pertama di halaman yang sama. Misalnya, 3 x 3 = 9, kamu akan menulis 9 di sebelah pecahan pertama, di sisi kiri halaman. 4Kalikan bilangan atas pecahan kedua dengan bilangan bawah pecahan pertama. Untuk mencari tahu pecahan yang lebih besar, kita harus membandingkan jawaban di atas dengan jawaban perkalian ini. Kalikan keduanya. Misalnya, untuk contoh kita membandingkan 3/5 dan 2/3, kalikan 2 x 5. 5Tuliskan jawabannya di sebelah pecahan kedua. Tuliskan jawaban hasil perkalian kedua ini di sebelah pecahan kedua. Dalam contoh ini, hasilnya adalah 10. 6 Bandingkan hasil perkalian silang keduanya. Jawaban dari perkalian ini disebut hasil perkalian silang. Jika salah satu hasil perkalian silang lebih besar dari yang lain, maka pecahan yang ada di sebelah hasil tersebut, lebih besar daripada pecahan yang lain. Dalam contoh kita, karena 9 lebih kecil dari 10, maka artinya 3/5 lebih kecil dari 2/3. Ingatlah, untuk selalu menuliskan hasil perkalian silang di sebelah pecahan yang pembilangnya kamu gunakan. 7 Pahami cara kerjanya. Untuk membandingkan dua pecahan, pada dasarnya, kamu mengubah pecahan agar memiliki penyebut atau bagian bawah pecahan yang sama. Inilah yang dilakukan perkalian silang! [2] Perkalian silang hanya melewati langkah menulis penyebutnya. Karena kedua pecahan akan memiliki nilai penyebut yang sama, kamu hanya perlu membandingkan kedua bilangan atasnya. Berikut contoh kita 3/5 vs 2/3, ditulis tanpa cara singkat perkalian silang 3/5=3x3/5x3=9/15 2/3=2x5/3x5=10/15 9/15 lebih kecil dari 10/15 Sehingga, 3/5 lebih kecil dari 2/3 Iklan 1 Gunakan cara ini untuk pecahan dengan pembilang yang sama atau lebih besar dari penyebutnya. Jika sebuah pecahan memiliki angka atas atau pembilang yang lebih besar dari angka bawah atau penyebut, nilainya lebih besar dari 1. Contoh pecahan ini adalah 8/3. Kamu juga bisa menggunakan cara ini untuk pecahan dengan pembilang dan penyebut yang sama, misalnya 9/9. Kedua pecahan ini adalah contoh pecahan tidak biasa.[3] Kamu masih dapat menggunakan cara lain untuk pecahan ini. Cara ini membantu pecahan terlihat lebih masuk akal, dan lebih cepat. 2 Ubahlah setiap pecahan biasa menjadi pecahan campuran. Ubahlah menjadi campuran bilangan cacah dan pecahan. Terkadang, kamu bisa membayangkannya di kepalamu. Misalnya, 9/9 = 1. Di waktu yang lain, gunakan pembagian yang panjang untuk menentukan berapa kali pembilang dapat dibagi dengan habis oleh penyebut. Jika ada sisa dari pembagian panjang tersebut, bilangan tersebut adalah sisa pecahan. Misalnya 8/3 = 2 + 2/3 9/9 = 1 19/4 = 4 + 3/4 13/6 = 2 + 1/6 3 Urutkan bilangan cacahnya. Sekarang, karena pecahan campuran sudah diubah, kamu bisa menentukan bilangan yang lebih besar. Untuk sementara, abaikan pecahannya, dan urutkan pecahan berdasarkan besar bilangan cacahnya 1 adalah yang terkecil 2 + 2/3 dan 2 + 1/6 kita belum tahu pecahan mana yang lebih besar 4 + 3/4 adalah yang terbesar 4 Jika perlu, bandingkan pecahan dari setiap kelompok. Jika kamu memiliki beberapa pecahan campuran dengan bilangan cacah yang sama, misalnya 2 + 2/3 dan 2 + 1/6, bandingkan bagian pecahannya untuk menentukan pecahan yang lebih besar. Kamu bisa menggunakan cara manapun di bagian lain untuk melakukannya. Berikut adalah contoh membandingkan 2 + 2/3 dan 2 + 1/6, membuat penyebut kedua pecahan sama besar 2/3 = 2x2/3x2 = 4/6 1/6 = 1/6 4/6 lebih besar dari 1/6 2 + 4/6 lebih besar dari 2 + 1/6 2 + 2/3 lebih besar dari 2 + 1/6 5Gunakan hasilnya untuk mengurutkan semua bilangan campuran. Jika kamu sudah mengurutkan pecahan dalam setiap kelompok bilangan campurannya, kamu bisa mengurutkan semua bilanganmu 1, 2 + 1/6, 2 + 2/3, 4 + 3/4. 6Ubahlah bilangan campuran ke bentuk pecahan awalnya. Biarkan urutannya tetap sama, tetapi ubahlah menjadi bentuk awalnya dan tuliskan bilangan dalam pecahan biasa 9/9, 8/3, 13/6, 19/4. Iklan Jika pembilangnya semua sama, kamu bisa mengurutkan penyebutnya secara terbalik. Misalnya, 1/8 < 1/7 < 1/6 < 1/5. Bayangkan seperti piza jika awalnya kamu memiliki 1/2 kemudian menjadi 1/8, kamu membagi piza menjadi 8 bagian bukan 2, dan setiap 1 potongan yang kamu dapatkan lebih sedikit. Saat mengurutkan pecahan dengan bilangan yang besar, membandingkan dan mengurutkan sekelompok kecil angka yang terdiri dari 2, 3, atau 4 bilangan pecahan mungkin akan membantu. Meskipun mencari penyebut terkecil yang sama memang membantu agar kamu dapat menyelesaikan soal dengan bilangan yang lebih kecil, sebenarnya penyebut berapa pun yang sama bisa digunakan. Cobalah mengurutkan 2/3, 5/6, dan 1/3 menggunakan penyebut 36, dan perhatikan apakah jawabaannya sama. Iklan Tentang wikiHow ini Halaman ini telah diakses sebanyak kali. Apakah artikel ini membantu Anda?
Unduh PDF Unduh PDF Dalam matematika, pemfaktoran adalah cara mencari bilangan-bilangan atau ekspresi-ekspresi yang jika dikalikan akan menghasilkan bilangan atau persamaan yang diberikan. Pemfaktoran adalah keterampilan yang berguna untuk dipelajari untuk menyelesaikan soal-soal aljabar sederhana; kemampuan untuk memfaktorkan dengan baik, menjadi penting saat menghadapi persamaan-persamaan kuadrat dan bentuk polinomial lainnya. Pemfaktoran dapat digunakan untuk menyederhanakan ekspresi aljabar untuk membuat penyelesaiannya lebih mudah. Pemfaktoran bahkan dapat memberikan Anda kemampuan untuk menghilangkan jawaban-jawaban tertentu yang mungkin, jauh lebih cepat daripada menyelesaikannya secara manual. 1 Pahami definisi pemfaktoran saat diterapkan pada bilangan-bilangan tunggal. Pemfaktoran adalah konsep yang sederhana, tetapi dalam praktiknya, dapat menjadi sesuatu yang menantang saat diterapkan pada persamaan-persamaan rumit. Oleh karena itu, paling mudah untuk melakukan pendekatan konsep pemfaktoran dengan mulai dari bilangan-bilangan sederhana, kemudian dilanjutkan ke persamaan-persamaan sederhana, sebelum akhirnya melanjutkan ke terapan yang lebih rumit. Faktor-faktor dari sebuah bilangan adalah bilangan-bilangan yang jika dikalikan akan menghasilkan bilangan tersebut. Misalnya, faktor dari 12 adalah 1, 12, 2, 6, 3, dan 4, karena 1 × 12, 2 × 6, dan 3 × 4 sama dengan 12. Cara lain untuk membayangkannya adalah bahwa faktor-faktor sebuah bilangan adalah bilangan-bilangan yang dapat membagi habis bilangan tersebut. Dapatkah Anda mencari semua faktor dari bilangan 60? Kita menggunakan bilangan 60 untuk beragam tujuan menit dalam satu jam, detik dalam satu menit, dst. karena dapat dibagi habis oleh cukup banyak bilangan-bilangan lain. Faktor dari 60 adalah 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, dan 60. 2 Pahami bahwa ekspresi-ekspresi variabel juga dapat difaktorkan. Sama seperti bilangan-bilangan sendiri yang dapat difaktorkan, variabel dengan koefisien bilangan juga dapat difaktorkan. Untuk melakukannya, carilah saja faktor-faktor koefisien variabelnya. Mengetahui cara memfaktorkan variabel sangat berguna untuk menyederhanakan persamaan-persamaan aljabar yang meliputi variabel tersebut. Misalnya, variabel 12x dapat ditulis sebagai hasil perkalian dari faktor-faktor 12 dan x. Kita dapat menulis 12x sebagai 34x, 26x, dst., menggunakan faktor-faktor mana pun dari 12 yang paling baik untuk tujuan kita. Kita bahkan dapat memfaktorkan 12x beberapa kali. Dengan kata lain, kita tidak harus berhenti di 34x atau 26x – kita dapat memfaktorkan 4x dan 6x untuk menghasilkan 322x dan 232x. Tentunya, dua ekspresi ini setara. 3 Terapkan sifat distributif perkalian untuk memfaktorkan persamaan-persamaan aljabar. Menggunakan pengetahuan tentang cara memfaktorkan baik bilangan-bilangan tunggal maupun variabel-variabel dengan koefisien, Anda dapat menyederhanakan persamaan aljabar sederhana dengan mencari faktor-faktor yang dimiliki oleh bilangan-bilangan dan variabel tersebut dalam persamaan alajabar. Biasanya, untuk menyederhanakan suatu persamaan, kita mencoba mencari faktor persekutuan terbesarnya. Proses penyederhanaan persamaan ini mungkin dilakukan karena sifat distributif perkalian, yang berlaku untuk bilangan a, b, dan c apa pun ab + c = ab + ac. Ayo coba sebuah contoh soal. Untuk memfaktorkan persamaan aljabar 12x + 6, pertama, ayo coba cari faktor persekutuan terbesar dari 12x dan 6. 6 adalah bilangan terbesar yang dapat membagi habis 12x dan 6, sehingga kita dapat menyederhanakan persamaannya menjadi 62x + 1. Proses ini juga berlaku pada persamaan-persamaan dengan bilangan negatif dan pecahan. Misalnya, x/2 + 4, dapat disederhanakan menjadi 1/2x + 8, dan -7x + -21 dapat difaktorkan menjadi -7x + 3. Iklan 1 Pastikan bahwa persamaan dalam bentuk kuadrat ax2 + bx + c = 0. Persamaan-persamaan kuadrat memiliki bentuk ax2 + bx + c = 0, dengan a, b, dan c sebagai konstanta bilangan dan tidak sama dengan 0 perhatikan bahwa a dapat sama dengan 1 atau -1. Jika Anda memiliki persamaan yang memiliki satu variabel x yang memiliki satu suku x pangkat dua atau lebih, Anda biasanya memindahkan suku-suku ini dalam persamaan menggunakan operasi aljabar sederhana untuk mendapatkan 0 di salah satu sisi tanda sama dengan dan ax2, dst. di sisi yang lain. Misalnya, ayo pikirkan persamaan aljabar. 5x2 + 7x - 9 = 4x2 + x - 18 dapat disederhanakan menjadi x2 + 6x + 9 = 0, yang merupakan bentuk kuadrat. Persamaan-persamaan dengan pangkat x yang lebih besar, seperti x3, x4, dst. bukanlah persamaan-persamaan kuadrat. Persamaan-persamaan ini adalah persamaan kubik, pangkat empat, dan seterusnya, kecuali persamaannya dapat disederhanakan untuk menghilangkan suku-suku x dengan pangkat lebih besar dari 2 ini. 2 Dalam persamaan kuadrat, dengan a = 1, difaktorkan menjadi x+d x+e, dengan d × e = c dan d + e = b. Jika persamaan kuadrat Anda dalam bentuk x2 + bx + c = 0 dengan kata lain, jika koefisien dari suku x2 = 1, mungkin tetapi tidak menjamin bahwa cara singkat yang cukup mudah dapat digunakan untuk memfaktorkan persamaan. Carilah dua bilangan yang jika dikalikan menghasilkan c dan dijumlahkan menghasilkan b. Setelah Anda mencari kedua bilangan d dan e ini, letakkan keduanya dalam ekspresi berikut x+dx+e. Kedua suku ini, jika dikalikan, menghasilkan persamaan kuadrat Anda – dengan kata lain, kedua suku ini adalah faktor-faktor persamaan kuadrat Anda. Misalnya, ayo pikirkan persamaan kuadrat x2 + 5x + 6 = 0. 3 dan 2 dikalikan menghasilkan 6 dan juga dijumlahkan menghasikan 5, sehingga kita dapat menyederhanakan persamaan ini menjadi x + 3x + 2. Sedikit perbedaan dalam cara singkat dasar ini terdapat pada perbedaan persamaannya sendiri Jika persamaan kuadrat dalam bentuk x2-bx+c, jawaban Anda dalam bentuk ini x - _x - _. Jika persamaan dalam bentuk x2+bx+c, jawaban Anda tampak seperti ini x + _x + _. Jika persamaan dalam bentuk x2-bx-c, jawaban Anda dalam bentuk x + _x - _. Catatan bilangan-bilangan dalam tempat kosong dapat berupa pecahan atau desimal. Misalnya, persamaan x2 + 21/2x + 5 = 0 difaktorkan menjadi x + 10x + 1/2. 3 Jika memungkinkan, faktorkan melalui pemeriksaan. Percaya atau tidak, untuk persamaan-persamaan kuadrat yang tidak rumit, salah satu cara memfaktorkan yang diperbolehkan adalah dengan memeriksa soal, kemudian mempertimbangkan jawaban-jawaban yang mungkin hingga Anda menemukan jawaban yang benar. Cara ini juga disebut dengan pemfaktoran melalui pemeriksaan. Jika persamaan dalam bentuk ax2+bx+c dan a>1, jawaban faktor Anda dalam bentuk dx +/- _ex +/- _, dengan d dan e adalah konstanta bilangan bukan nol yang jika dikalikan menghasilkan a. Baik d maupun e atau keduanya dapat berupa bilangan 1, meskipun tidak harus. Jika keduanya adalah 1, Anda pada dasarnya menggunakan cara singkat yang dideskripsikan di atas. Ayo pikirkan sebuah contoh soal. 3x2 - 8x + 4 awalnya terlihat sulit. Akan tetapi, setelah kita menyadari bahwa 3 hanya memiliki dua faktor 3 dan 1, persamaan ini menjadi lebih mudah karena kita tahu bahwa jawaban kita pasti dalam bentuk 3x +/- _x +/- _. Dalam hal ini, menambahkan -2 ke kedua tempat kosong memberikan jawaban yang benar. -2 × 3x = -6x dan -2 × x = -2x. -6x dan -2x dijumlahkan menjadi -8x. -2 × -2 = 4, sehingga kita bisa melihat bahwa suku-suku yang difaktorkan dalam tanda kurung jika dikalikan akan menghasilkan persamaan awal. 4 Selesaikan dengan melengkapi kuadrat. Dalam beberapa kasus, persamaan kuadrat dapat dengan cepat dan mudah difaktorkan menggunakan identitas aljabar khusus. Persamaan kuadrat apa pun dalam bentuk x2 + 2xh + h2 = x + h2. Jadi, jika dalam persamaan Anda, nilai b Anda dua kali akar kuadrat dari nilai c Anda, persamaan Anda dapat difaktorkan menjadi x + akar c2. Misalnya, persamaan x2 + 6x + 9 memiliki bentuk ini. 32 adalah 9 dan 3 × 2 adalah 6. Jadi, kita tahu bahwa bentuk faktor persamaan ini adalah x + 3x + 3, atau x + 32. 5 Gunakan faktor-faktor untuk menyelesaikan persamaan-persamaan kuadrat. Tanpa memperhatikan cara Anda memfaktorkan persamaan kuadrat Anda, setelah persamaannya difaktorkan, Anda dapat mencari jawaban-jawaban yang mungkin untuk nilai x dengan membuat setiap faktor sama dengan nol dan menyelesaikannya. Karena Anda mencari nilai x yang menyebabkan persamaan Anda sama dengan nol, nilai x yang membuat faktor manapun sama dengan nol, adalah jawaban yang mungkin untuk persamaan kuadrat Anda. Ayo kembali ke persamaan x2 + 5x + 6 = 0. Persamaan ini difaktorkan menjadi x + 3x + 2 = 0. Jika salah satu faktor sama dengan 0, semua persamaan sama dengan 0, sehingga jawaban-jawaban kita yang mungkin untuk x adalah bilangan-bilangan yang membuat x + 3 dan x + 2 sama dengan 0. Bilangan-bilangan ini masing-masing adalah -3 dan -2. 6 Periksa jawaban-jawaban Anda – beberapa jawabannya mungkin menyimpang! Saat Anda menemukan jawaban-jawaban yang mungkin untuk x, masukkan kembali ke dalam persamaan awal Anda untuk melihat jika jawabannya benar. Terkadang, jawaban yang Anda temukan tidak membuat persamaan awalnya sama dengan nol ketika dimasukkan kembali. Kita menyebut jawaban ini menyimpang dan mengabaikannya. Ayo masukkan -2 dan -3 ke dalam x2 + 5x + 6 = 0. Pertama, -2 -22 + 5-2 + 6 = 0 4 + -10 + 6 = 0 0 = 0. Jawaban ini benar, sehingga -2 adalah jawaban yang benar. Sekarang, ayo coba -3 -32 + 5-3 + 6 = 0 9 + -15 + 6 = 0 0 = 0. Jawaban ini juga benar, sehingga -3 adalah jawaban yang benar. Iklan 1 Jika persamaan dinyatakan dalam bentuk a2-b2, faktorkan menjadi a+ba-b. Persamaan-persamaan dengan dua variabel memiliki faktor yang berbeda dengan persamaan kuadrat dasar. Untuk persamaan a2-b2 apapun dengan a dan b tidak sama dengan 0, faktor-faktor persamaannya adalah a+ba-b. Misalnya, persamaan 9x2 - 4y2 = 3x + 2y3x - 2y. 2 Jika persamaan dinyatakan dalam bentuk a2+2ab+b2, faktorkan menjadi a+b2. Perhatikan bahwa, jika trinomial-nya dalam bentuk a2-2ab+b2, bentuk faktornya sedikit berbeda a-b2. Persamaan 4x2 + 8xy + 4y2 dapat ditulis ulang sebagai 4x2 + 2 × 2 × 2xy + 4y2. Sekarang, kita bisa melihat bahwa bentuknya sudah benar, sehingga kita bisa yakin bahwa faktor-faktor persamaan kita adalah 2x + 2y2 3 Jika persamaan dinyatakan dalam bentuk a3-b3, faktorkan menjadi a-ba2+ab+b2. Akhirnya, sudah disebutkan bahwa persamaan-persamaan kubik dan bahkan pangkat yang lebih tinggi, dapat difaktorkan, meskipun proses pemfaktorannya dengan cepat berubah menjadi sangat rumit. Misalnya, 8x3 - 27y3 difaktorkan menjadi 2x - 3y4x2 + 2x3y + 9y2 Iklan a2-b2 dapat difaktorkan, a2+b2 tidak dapat difaktorkan. Ingatlah cara memfaktorkan konstanta. Hal ini mungkin membantu. Hati-hati dengan pecahan dalam proses pemfaktoran dan kerjakan pecahan dengan benar dan hati-hati. Jika Anda memiliki trinomial dalam bentuk x2+bx+ b/22, bentuk faktornya adalah x+b/22. Anda mungkin akan menemui situasi ini saat melengkapkan kuadrat. Ingatlah bahwa a0=0 sifat hasil perkalian nol. Iklan Hal yang Anda Butuhkan Kertas Pensil Buku matematika jika perlu Tentang wikiHow ini Halaman ini telah diakses sebanyak kali. Apakah artikel ini membantu Anda?
Bentuk-bentuk persamaan logaritma ada apa aja, ya? Terus, gimana cara menyelesaikannya? Yuk, simak penjelasannya dalam artikel berikut! — Kalian pasti udah tau dong, kalo gempa itu adalah gelombang atau getaran yang merambat dan aktivitasnya bisa direkam pakai seismograf? Nah, tapi kamu tau nggak sih, gimana caranya seseorang menentukan intensitas gempa? Jadi, intensitas gempa itu bisa diukur dengan skala richter. Skala ini menggunakan prinsip dari logaritma dengan basis 10. Sebenarnya, masih banyak sih, contoh penerapan prinsip logaritma yang lainnya, misalnya taraf intensitas bunyi, mengukur pH atau tingkat asam suatu zat, dan lain sebagainya. Nah, pas banget nih, sama materi yang bakal kita bahas kali ini, yaitu persamaan logaritma. Untuk materi logaritmanya sendiri, mungkin rata-rata dari kalian belum pernah belajar ya, waktu di SMP dulu. Tapi, walaupun materi ini baru kalian temuin di SMA, materinya seru dan nggak susah kok! Sebelum kita ke pembahasan persamaan logaritma, make sure kamu harus udah paham konsep awal logaritma. Tapi, kalo kamu masih belum jelas, coba kamu check artikel tersebut, ya. Oke, kalo gitu langsung aja kita mulai pembahasan persamaan logaritma! Pengertian Persamaan Logaritma Persamaan logaritma adalah persamaan yang memuat bentuk logaritma dengan basis atau numerus, atau keduanya memuat variabel. Jadi maksudnya, ada dua bentuk logaritma di ruas kiri dan kanan dimana basis atau numerus atau keduanya memuat variabel, kemudian kedua ruas ini dihubungan dengan tanda sama dengan. Nilai x yang memenuhi persamaan ini disebut dengan penyelesaian dari persamaan tersebut. Sebelumnya, masih inget kan sama bentuk umum logaritma yang ini alog x = n a = basis atau bilangan pokok, dengan syarat a > 0 dan a≠1x = numerus, dengan syarat x > 0n = nilai logaritma Terus, kalau persamaan logaritma bentuknya gimana ya? Bentuknya sama seperti bentuk umum logaritma, tapi pada persamaan logaritma, bentuk logaritmanya ada dua di ruas kiri dan kanan lalu dihubungkan menggunakan tanda sama dengan. Contohnya seperti ini, nih 3log 2x+9 = 3log 10x – 16 Nanti kita akan bahas lebih lanjut ya, gimana caranya untuk mendapatkan nilai x yang memenuhi persamaan tersebut. Tapi sebelum itu, kita bahas bentuk-bentuk persamaan logaritma dulu, ya! Bentuk-Bentuk Persamaan Logaritma Nggak jauh beda dari materi eksponen, persamaan logaritma juga punya beberapa bentuk yang bikin kamu lebih gampang untuk mengidentifikasi nilai peubahnya. Nah, ini dia bentuk-bentuk persamaan logaritma Wah, keliatannya ribet ya. Tapi padahal nggak sesusah itu kok. Sederhananya, logaritma memiliki enam bentuk seperti yang bisa kamu lihat pada gambar di atas. Bentuk Pertama Sekarang kita coba bahas mulai dari bentuk yang pertama, yaitu alog fx = alog n. Coba perhatikan gambar berikut! Nah, supaya kamu lebih paham, kita langsung masuk ke contoh soal ya, sekalian kita belajar gimana cara menyelesaikan persamaannya. Contoh soal Tentukan nilai x yang memenuhi persamaan logaritma berikut ini 3log 3x+6 = 3log 9 2log x+9 = 5 Jawab a. 3log 3x+6 = 3log 9 Karena basis dari logaritmanya nilainya sama, maka nilai numerusnya juga akan sama. Sehingga bisa kita tulis seperti berikut Kemudian, kita bisa uji numerus, jadi kita substitusi x = 1 ke 3x + 6. 3x + 6 = 31 + 6 = 9 Nah, ketemu nih, hasilnya adalah 9, di mana 9 > 0, maka syarat numerus fx > 0 terpenuhi. Jadi, penyelesaian 3log 3x+6 = 3log 9 adalah x = 1. b. 2log x+9 = 5 Nah, untuk menyelesaikan persamaan ini, kita ubah ruas kanan ke bentuk logaritma terlebih dahulu, dengan memilih nilai basis yang sama dengan ruas kiri, dan memanfaatkan sifat alog bc = c alog b. Maka menjadi seperti berikut 2log x+9 = 5 x 2log 2 2log x+9 = 2log 25 5 kita pindah sebagai pangkat dan ini nggak mengubah nilai, hanya mengubah bentuknya aja Lanjut, kita uji numerus, x+9 = 23 + 9 = 32, karena 32 > 0, maka syarat terpenuhi. Jadi, nilai x yang memenuhi persamaan 2log x+9 = 5 adalah 23. Sekarang kita lanjut ke bentuk persamaan logaritma yang kedua, yuk! Bentuk Kedua Bentuk persamaan logaritma yang kedua, hampir sama dengan bentuk yang pertama tadi, tapi numerusnya berbeda. Kita langsung kerjakan contoh soal, ya! Contoh soal Tentukan nilai x yang memenuhi persamaan log x2 – 2x – 15 = log x + 3! Jawab Nah, sampai disini kita bisa uji syarat numerus. Untuk x = – 3 fx = x2 – 2x -15 = -32 – 2- 3 -15 = 0gx = x2 + 3 = -32+3 = 12 Walau gx > 0 tapi fx = 0, jadi x = -3 tidak memenuhi persamaan logaritma ini. Lanjut untuk x = 6. Untuk x = 6fx = x2-2x-15 = 62-26-15 = 9gx = x2+3= 62+3 = 39 Memenuhi karena fx dan gx > 0. Jadi, nilai x yang memenuhi persamaan log x2-2x-15 = log x+3 adalah x = 6. Sekarang, lanjut ke bentuk ketiga! Bentuk Ketiga Untuk bentuk persamaan logaritma yang ketiga, bentuknya adalah seperti infografik di bawah ini. Coba perhatikan! Di persamaan ketiga ini numerusnya sama, tapi basisnya berbeda. Contoh soal Tentukan nilai x yang memenuhi persamaan 2log 5x-9 = 5log 5x-9! Jawab Karena numerus sama yaitu 5x – 9 dan kedua basis nilainya lebih dari 0, berarti sudah dipastikan numerus = 1. Kita bisa melakukan uji numerus, 5x – 9 = 52 – 9 = 1 di mana 1 > 0 dan syarat terpenuhi. Penyelesaian dari 2log5x-9 = 5log5x-9 persamaan adalah x = 2. Gimana seru kann? yuk kita bahas bentuk selanjutnya! Bentuk Keempat Oke guys, kita udah sampai di bentuk persamaan logaritma yang keempat. Perhatikan infografik di bawah. Persamaan ini hampir mirip kayak bentuk persamaan nomor 2. Bedanya, basis sama numerus punya variabel, tapi basis di kiri dan kanan tetap sama ya, kaya gini nih! Contoh soal Tentukan nilai x yang memenuhi persamaan x-1log x2-16 = x-1log 5x-2! Jawab kemudian kita faktorkan x – 7 x + 2 diperoleh x = 7 dan x = -2 Lalu kita uji syarat basis dan numerusnya, agar lebih mudah kita pakai tabel aja ya. Karena x = 7 menghasilkan numerus x2 – 7 dan 5x -2 yang lebih dari 0, kemudian basis x-1 yang lebih dari 0 dan tidak sama dengan 1, maka hanya x = 7 yang memenuhi syarat logaritmanya. Jadi, penyelesaian dari persamaan ini adalah x = 7. Bentuk Kelima Nah, untuk bentuk kelima, kamu bisa perhatikan infografik berikut. Jangan lupa perhatikan syaratnya juga, ya! Untuk bentuk kelima ini, tipenya seperti bentuk yang sebelumnya memiliki variabel di numerus dan basis, tapi basis di kiri dan kanan berbeda. Contoh soal Tentukan penyelesaian persamaan x+3log x2-5 = 2x-1log x2-5! Jawab Lanjut kita uji syarat basis dan numerusnya, ya! Uji Basis Uji NumerusMemenuhi syarat karena numerus > 0 Saat x2 – 5 = 1, maka x = ±√6Tapi, yang memenuhi hanya √6 saja karena hanya nilai √6 yang memenuhi syarat basis dan numerus. Oke, kita udah dapet nih, penyelesaian persamaan x+3log x2-5 = 2x-1log x2-5 yaitu x = 4. Bentuk Keenam Bentuk keenam atau bentuk terakhir ini agak berbeda dari persamaan sebelumnya ya, karena bentuk persamaan logaritma ini membentuk persamaan kuadrat. Perhatikan infografik berikut ini ya Supaya kamu bisa nyelesain persamaan yang dikasih, tugas kamu harus memisalkan logaritma jadi bentuk. Nah, dari permisalan itu, kamu bakal dapet bentuk persamaan kuadratnya. Contoh soal Tentukan penyelesaian persamaan 3log2 x – 3log x3 – 4 = 0! Jawab Walau dari bentuk umum tandanya plus, tapi kita bisa menjumpai soal yang tandanya minus seperti halnya persamaan kuadrat, 3log2 x – 3log x3 – 4 = 0 bisa juga ditulis dengan 3log2 x+ -3log x3 + -4 Jadi, gak ada masalah ya untuk tanda plus dan minus, yang penting kamu fokus di basis dan numerusnya. Oke, supaya kita dapet nilai x-nya, langsung aja kita substitusi nilai y ke permisalan. Wahhh, akhirnya selesai juga nih bahasan kita tentang bentuk-bentuk persamaan logaritma dan cara menyelesaikannya. Sekarang kamu udah lebih ngerti, kan? Intinya, kamu harus mengingat syarat-syarat dari masing-masing bentuk. Jangan sampai tertukar! Oh ya, setelah baca ini jangan langsung bobo yaa hehehe, karena kamu harus banget latihan soal di ruangbelajar. Pemahaman kamu tentang persamaan logaritma ini bakal lebih keren lagi deh, karena fitur di ruangbelajar lengkap banget, mulai dari latihan soal yang selalu update dan juga pembahasan yang asik plus mudah dimengerti dari Master Teacher. So, tunggu apalagi? Yuk, ke ruangbelajar! Referensi Sinaga, B. 2014. Matematika SMA/MA Kelas X Semester 1. Jakarta Pusat Perbukuan, Departemen Pendidikan Nasional. Artikel ini telah diperbarui pada 28 September 2021.
– Uji t dikembangkan oleh William Sealy Gosset. Dalam artikel publikasinya, ia menggunakan nama samaran Student, sehingga kemudian metode pengujiannya dikenal dengan uji t-student. William Sealy Gosset menganggap bahwa untuk sampel kecil, nilai Z dari distribusi normal tidak begitu cocok. Oleh karenanya, ia kemudian mengembangkan distribusi lain yang mirip dengan distribusi normal, yang dikenal dengan distribusi t-student. Distribusi student ini berlaku baik untuk sampel kecil maupun sampel besar. Pada n ≥ 30, distribusi t ini mendekati distribusi normal dan pada n yang sangat besar, misalnya n=10000, nilai distribusi t sama persis dengan nilai distribusi normal lihat tabel t pada df 10000 dan bandingkan dengan nilai Z. Pemakaian uji t ini bervariasi. Uji ini bisa digunakan untuk objek studi yang berpasangan dan juga bisa untuk objek studi yang tidak berpasangan. Berikut contoh penggunaan uji t. Uji t tidak berpasangan Contoh kasus Kita ingin menguji dua jenis pupuk nitrogen terhadap hasil padi Hipotesis Hasil penelitian tertera pada Tabel 1. Tabel 1. Data hasil penelitian dua jenis pupuk nitrogen terhadap hasil padi t/h Data analisis adalah sebagai berikut Hitunglah Setelah itu, kita lihat nilai t table, sebagai nilai pembanding. Cara melihatnya adalah sebagai berikut. Pertama kita lihat kolom α = pada Tabel 2. Nilai α ini berasal dari α dibagi 2, karena hipotesis HAkita adalah hipotesis 2 arah lihat hipotesis. Kemudian, kita lihat baris ke 22. Nilai 22 ini adalah nilai df, yaitu n1+n2-2. Nilai n adalah jumlah ulangan, yaitu masing 12 ulangan. Akhirnya, kita peroleh nilai t table = Baca Juga 1 inci Berapa cm Tabel 2. Nilai t Kriteria Pengambilan Kesimpulan Terima H0, jika thit t table Kesimpulan Karena nila thit= tanda minus diabaikan dan nilai t table= maka kita tolak H0, alias kita terima HA. Dengan demikian, 1 ≠ 2, yaitu hasil padi yang dipupuk dengan pupuk A tidak sama dengan hasil padi yang dipupuk dengan pupuk B. Lebih lanjut, kita lihat bahwa rata-rata hasil padi yang dipupuk dengan pupuk B lebih tinggi daripada yang dipupuk dengan pupuk A. Dengan demikian, kita dapat menyimpulkan bahwa pupuk B nyata lebih baik daripada pupuk A untuk meningkatkan hasil padi. Baca Juga Persamaan Linear Satu Variabel Uji t berpasangan Uji t dikembangkan oleh William Sealy Gosset. Dalam artikel publikasinya, ia menggunakan nama samaran Student, sehingga kemudian metode pengujiannya dikenal dengan uji t-student. William Sealy Gosset menganggap bahwa untuk sampel kecil, nilai Z dari distribusi normal tidak begitu cocok. Oleh karenanya, ia kemudian mengembangkan distribusi lain yang mirip dengan distribusi normal, yang dikenal dengan distribusi t-student. Distribusi student ini berlaku baik untuk sampel kecil maupun sampel besar. Pada n ≥ 30, distribusi t ini mendekati distribusi normal dan pada n yang sangat besar, misalnya n=10000, nilai distribusi t sama persis dengan nilai distribusi normal lihat tabel t pada df 10000 dan bandingkan dengan nilai Z. Pemakaian uji t ini bervariasi. Uji ini bisa digunakan untuk objek studi yang berpasangan dan juga bisa untuk objek studi yang tidak berpasangan. Berikut contoh penggunaan uji t. Uji t berpasangan Contoh kasus. Kita ingin menguji metode pembelajaran baru terhadap tingkat penguasaan materi ajar pada mahasiswa. Hipotesis Data hasil penelitian dari penggunaan metode pembelajaran baru adalah sebagaimana tertera pada Tabel 1. Tabel 1. Data hasil penelitian dari penggunaan metode pembelajaran baru Data analisis adalah sebagai berikut. Tabel 2. Tabel analisis data Baca Juga Pertidaksamaan Linear Satu Variabel Hitunglah Setelah itu, kita lihat nilai t table, sebagai nilai pembanding. Cara melihatnya adalah sebagai berikut. Pertama kita lihat kolom α = pada Tabel 3. Nilai α ini berasal dari α dibagi 2, karena hipotesis HAkita adalah hipotesis 2 arah lihat hipotesis. Kemudian, kita lihat baris ke 14. Nilai 14 ini adalah nilai df, yaitu n-1. Nilai n adalah jumlah mahasiswa, yaitu 15 orang. Akhirnya, kita peroleh nilai t table = t table = t α/2 df = n-1= = = Tabel 2. Nilai t Kriteria Pengambilan Kesimpulan Terima H0, jika thit t table Baca Juga Kesimpulan Karena nila thit= tanda minus diabaikan dan nilai t table= maka kita tolak H0, alias kita terima HA. Dengan demikian, Yaitu nilai pre-test tidak sama dengan nilai post-test. Lebih lanjut, kita lihat bahwa rata-rata nilai post-test lebih tinggi daripada nilai pre-test. Secara lengkap, kita dapat menyimpulkan bahwa metode pembelajaran baru secara nyata dapat meningkatkan pemahaman mahasiswa terhadap materi ajar yang diberikan. Mencari Nilai Tabel t Tabel t dapat dipergunakan untuk menguji rata-rata hitung populasi dalam sampel kecil. Proses pengujian hipotesa untuk sampel kecil tidak berbeda dengan sampel besar, yakni melalui beberapa tahapan sebagai berikut a merumuskan hipotesa nol Ho dan hipotesa alternatif Ha; b menentukan nilai alpha taraf nyata apakah 1%, 5% atau pada taraf lainnya serta mengetahui titik kritis berdasarkan pada tabel t; c menentukan uji statistik dengan menggunakan rumus uji-t; d menentukan daerah keputusan yaitu daerah tidak menolak Ho dan daerah menolak Ho; dan e mengambil keputusan untuk menolak dan menerima dengan membandingkan nilai alpha dengan nilai uji-t. Satu Sisi Sebagaimana dalam uji statistik untuk sampel besar n>30, penggunaan notasi akan menentukan posisi daerah penolakan dalam gambar distribusi. Jika kita menggunakan notasi kurang dari < maka gambar distribusinya adalah sebagai berikut Tabel t digunakan untuk menentukan titik kritis batas daerah penolakan yang dalam distribusi menggunakan notasi alpha a, dan juga nilai dari hasil perhitungan statistik, sehingga kita bisa mengambil kesimpulan. Pada tabel t, nilai kritis dalam uji statistik satu sisi adalah t a , v ; dengan v = n-1 Contoh Dalam suatu penelitian ditentukan bahwa n = 4 dan nilai alpha 0,01 1% maka untuk mengetahui nilai kritis dalam distribusi yang ditunjukkan dengan tabel t untuk satu sisi adalah sebagai berikut Langkah pertama Setelah merumuskan hipotesa nol dan hipotesa alternatif Ho, Ha serta menentukan nilai alpha, Tabel t digunakan untuk menentukan titik kritis dengan formula t = a , v; dengan v = n – 1 untuk uji statistik satu sisi. Setelah ditentukan nilai alpha adalah 0,01 maka langkah selanjutnya adalah menentukan derajat bebas v yang diperoleh dari n – 1. Jumlah n = 4, jadi 4 – 1 = 3. Langkah kedua perhatikan tabel t dalam BMP lihat halaman Diketahui bahwa df = 3, maka cari angka 3 di garis paling kiri kemudian tarik ke kanan sampai kolom a = 0,01 akan didapat nilai t adalah 4,541. Dengan cara yang sama dapat dicari nilai kritis untuk alpha a dan derajat bebas v yang lain. Langkah ketiga melakukan uji statistik t dengan rumus t Langkah keempat menentukan daerah keputusan dengan nilai kritis 4,541. Untuk notasi < maka nilai ini otomatis berubah menjadi – 4,541. Langkah kelima mengambil keputusan untuk menolak Ho dan menerima Ho dengan membandingkan nilai alpha dengan nilai uji-t Baca Juga Angka Romawi Dua Sisi Dua sisi kita gunakan jika dalam perumusan hipotesa digunakan notasi “sama dengan” =. Gambar distribusinya adalah sebagai berikut Contoh Jika dalam suatu penelitian ditentukan bahwa n = 16 dan nilai alpha 0,05 maka untuk mengetahui nilai titik dalam distribusi yang ditunjukkan dengan tabel t untuk dua sisi adalah sebagai berikut Langkah pertama Merumuskan hipotesa untuk uji statistik dua sisi dan menentukan nilai kritis t dua sisi a/2, v. Untuk uji dua sisi nilai alpha adalah 0,05/2 = 0,025 dan derajat bebas v = n – 1 = 16 – 1 = 15. Langkah kedua Perhatikan tabel distribusi t dalam BMP lihat halaman Sebagaimana mencari nilai kritis t satu sisi, cari nilai alpha pada kolom horizontal paling atas dan derajat bebas pada kolom vertikal paling kiri. Diperoleh nilai kritis t adalah 2,131 Langkah ketiga melakukan uji statistik t dengan rumus t Langkah ketiga menentukan daerah keputusan dengan nilai kritis 2,131 uji dua arah Langkah keempat mengambil keputusan untuk menolak Ho dan menerima Ho dengan membandingkan nilai alpha dengan nilai uji-t Demikianlah Penjelasan artikel diatas tentang Tabel T Statistik – Pengertian, Rumus, Contoh Soal Dan Nilai tentang semoga dapat bermanfaat bagi pembaca setia
54 sama dengan 9 lebih dari t